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1 INTRODUCTION

As a powerful solution to information overload, traditional recommender systems mainly focus on analyzing users’
historical behaviors in a specific domain (e.g., movies, books, or music). Recently, there has been growing concern
in Cross-Domain Recommendation Systems (CDRS), which link or transfer knowledge (e.g., user interests or item
attributes) from the source domain to enrich the data in the target domain. CDRS aims to improve recommendation
performance by sharing and complementing information from different domains, giving it more opportunities
to explore users’ broad interests and improving comprehensive recommendation performance (e.g., accuracy,
diversity, and serendipity).

Since different domains usually have inconsistent data structures and heterogeneous knowledge content, it
is difficult to generalize the source data directly to the target domain. Therefore, the mining of inter-domain
correlations is the hinge of cross-domain recommendation methods. One solution is knowledge linking-based
CDRS, which uses common knowledge to establish feature relationships between domains[5]. Such common
knowledge used in the methods can be tags[32], association rules[1], and semantic networks[6, 19, 26]. However,
despite the encouraging results from these methods, most are only suitable for specific scenarios due to the need
for manual pre-setting.

Knowledge Graph (KG) is built based on massive amounts of real-world facts. Encyclopedic KG provides
multi-relational data correlated with diverse domains, which can effectively deal with cross-domain knowledge
heterogeneity. In addition, the ontological nature and standard structured format of KG data allow CDRS to
explore inter-domain relationships at the semantic level without extensive manual processing. There are several
KG-based cross-domain methods [7, 31] that compute semantic similarity in an implicit manner (e.g., joint matrix
factorization) to enhance preference analysis. However, these methods ignore the well-organized structural
information of KG, making it difficult for them to capture comprehensive item characteristics and user preferences.
Therefore, for effective cross-domain correlation and knowledge augmentation, we introduce KG and propose to
leverage the knowledge from two perspectives, i.e., content semanticity and structural connectivity. Specifically,
we map the recommendation items to the corresponding entities in KG and then query the entity-related
information using Semantic Web standards (i.e., RDF! and SPARQL?). For example, we query DBpedia® for
information describing the item in book domain Harry Potter, and Fig. 1 shows part of the queried information.
We can see that there is a lot of semantic content related to the item: the subject includes “Magic” and “Curse”,
and its theme involves “Fantasy literature”. In addition, KG describes the relevance through the edges between
nodes in the graph. This structured format makes it possible to link items in other domains (e.g., the movie
Strike) beyond the same domain (e.g., the book The Wonderful Wizard of Oz), thus discovering the cross-domain
correlation. This example demonstrates that KG not only provides rich semantic information but also reveals
structural information across domains. This enlightens us to design the framework from the perspective of
content semanticity and structural connectivity, and we give two formal definitions:

Definition 1.1 (Content semanticity). Content semanticity focuses on descriptions (i.e. properties, classes,
categories) that reflect the similarity of entities. Entities whose descriptions are more semantically similar are
more closely associated. For example, semantic information can associate a “comedy” movie with a “humorous”

book.

Definition 1.2 (Structural connectivity). Structural connectivity focuses on graph links that reflect the relatedness
of entities. Entities with more links in the graph are more closely associated. For example, KG structured the
information that 7.K. Rowling is not only the author of the book Harry Potter but also the screenwriter of the
movie Fantastic Beasts, showing that the two cross-domain items are related.

Uhttps://www.w3.org/TR/rdf-primer
Zhttp://www.w3.org/TR/rdf-spargl-query
3http://dbpedia.org
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Due to the inherent properties of knowledge obtained from different perspectives, the effects of different types
of knowledge in exploring users’ domain-specific preferences tend to be distinctive. Our previous work([43]
investigates the effect of different types of knowledge in discovering cross-domain user interests. It suggests
that the semantic information performs well in the accuracy of user preference prediction, while the structural
information can bring more diverse recommendations. Motivated by this, we further design the feature fusion
strategy that combines the advantages of both types of information to improve the recommendation performance.
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The Wonderful l J.
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Fig. 1. Partial information display of the example of correlated knowledge based on KG. Blue twill nodes represent book
items and green mesh nodes represent movie items.

Based on the above pre-research, we propose a knowledge-aware cross-domain recommendation method to
fully explore the information in KG. The main contributions of this work are as follows:

o By highlighting the advantages of leveraging KG to enhance CDRS, we innovatively propose to mine
knowledge correlations from the perspectives of content semanticity and structural connectivity.

e From the perspective of content semanticity, we develop a novel model named Domain Adaptation-based
Semantic Feature Extraction (DASFE). Considering the differences in data distribution across domains, this
model unifies cross-domain semantic information into the same feature space to avoid negative knowledge
transfer. Under the idea of adversarial training, DASFE enables the automatic organization and reasonable
correlation of semantic concepts across domains in an unsupervised manner. Besides, we specifically
consider the large-scale and multi-label characteristics of KG data.

e From the perspective of structural connectivity, we further develop a Cross-Domain Knowledge Graph
Attention Network (CD-KGAT). It jointly models cross-domain high-order relations in our designed
knowledge-aware graph structure to relate domains with heterogeneous data. Moreover, we specially
devise feature fusion strategies to combine the advantages of semantic and structural information, which
aims at enhancing the representation learning ability of our method and thus improving the recommendation
performance.

o By conducting extensive experiments on two real-world datasets, we demonstrate the comprehensive
superiority of our method. We also perform a series of detailed analyses to validate the effectiveness of our
design.

The remaining part of the paper is organized as follows: Section 2 reviews related work. Section 3 presents
our proposed method in 3 parts: the overview and problem formation, the semantic extraction model, and our
proposed cross-domain recommendation method. Next, section 4 reports and compares the empirical results
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achieved by the proposed method in a cold-start situation, and we further experimentally verify the design
effectiveness of the proposed method. Finally, we end with conclusions and future research directions in Section
5.

2 RELATED WORK

In this section, we review three CDRS subfields relevant to our research.

2.1 Collaborative filtering-based cross-domain recommendation methods

Collaborative filtering (CF) provides recommendations for target users by analyzing the historical behaviors of
similar users[21]. Some early approaches[4, 16] directly merge rating matrices of different domains, treating the
task as single-domain recommendations. While easy to implement, this idea requires consistent rating patterns,
and ignoring cross-domain differences makes it unreliable in some scenarios. Wang et al.[40] propose a solution
that considers domain-specific rating patterns. The model constructs triple-bridge transfer based on latent factors,
rating patterns, and adjacency graphs, thereby promoting positive transfer across domains. Singh et al.[33]
propose the idea of joint matrix factorization, which adopts stochastic approximations to share the parameters of
the rating matrix in different domains. In addition, CDTF[15] uses the “user-item-domain” triadic relation to
capture the user preferences in different domains. It factorizes the tensors constructed based on genetic algorithms
to obtain domain-specific features. However, most of the aforementioned works are only applicable to scenarios
with fully overlapping users. Zhang et al.[47] use partially overlapping items as the bridge for knowledge transfer
and adopt diffusion kernel completion to solve cross-domain feature heterogeneity.

The advantages of CF-based methods are flexibility and simplicity, which make full use of the common features
across domains. However, these methods are usually susceptible to the degree of information overlapping and the
data density in the target domain. In contrast, our method is less limited by introducing auxiliary information KG
to mine domain correlations from two perspectives that can complement each other, thus being able to provide
effective recommendations for cold-start users in the target domain. Besides, our method employs a GNN for
information propagation and aggregation on the cross-domain graph, which is capable of capturing higher-order
collaborative information.

2.2 Semantic mapping-based cross-domain recommendation methods

Yang et al.[45] explore the semantic relations contained in tags, and introduce social influence and external
knowledge base to address the isolation and sparsity between tags in different domains. Its proposed local tag
propagation algorithm leverages optimized explicit semantic analysis to measure the correlation of cross-domain
tags. However, this tag-based approach can not fit domains with unannotated or unstructured information.
Therefore, Kumar et al.[22] use Latent Direchlet Allocation, a topic modeling technique applicable to structured
and unstructured textual, to deduce cross-domain semantic correlation. In addition, some approaches[6, 19, 26]
build semantic networks for cross-domain recommendations. For example, Fernandez-Tobias et al.[6] mine item-
relevant information from external knowledge repositories to build a semantic network. It utilizes a graph-based
weight spreading mechanism to perform the concept linking of two domains, hence recommending music artists
according to users’ Point of Interest (POI).

Semantic mapping-based methods have low dependence on ratings and can handle data sparsity and cross-
domain data heterogeneity well. However, such methods require laborious human efforts, such as performing
manual presetting or filtering reliable correlation medium. In comparison, our method satisfies the generality by
introducing an encyclopedic knowledge graph containing facts from multiple domains.
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2.3 Deep learning-based cross-domain recommendation methods

Due to the superior representation learning ability, more recent attention has focused on the deep learning-based
cross-domain recommendation. Existing deep cross-domain methods fall into three main categories: feature
mapping-based methods, adversarial learning-based methods, and network-based methods.

Feature mapping-based methods[9, 44, 50] unify information from different domains by aligning user and item
features in the same space. For example, Xu et al.[44] propose a multi-layer perceptron-based mapping method,
which transfers the user’s sentiment-aware features from the source domain to the target domain. The second
category of methods[18, 46] introduces adversarial learning for cross-domain recommendation. For example, Yuan
et al.[46] propose a cross-domain recommendation method based on domain adaptation. It interleaves the features
of the source and target domains extracted by an autoencoder and then feeds them into an adversarial structure
to obtain the rating pattern of the target domain. The third category is network-based deep methods, such as
the multi-view-based model MVDNNJ11] that jointly learns features from different domains, and TMH[14] that
builds a memory network and transfer network for modeling and transfer, respectively. In recent years, there has
been attention to exploring cross-domain recommendations based on Graph Neural Network (GNN). PPGN[48]
construct a unified graph of user-item interactions in multiple domains. By propagating the users’ preference on
the graph, it aims to maintain high-order structural information and explicitly model cross=domain interactions.
Despite good performance, PPGN does not exploit possible auxiliary information.

Compared to traditional methods, these deep methods have fewer constraints on input data and do not require
heavy manual processing. Deep computing, especially GNN, has demonstrated powerful capabilities in CDRS,
where learned informative features can enhance the recommendation system. However, existing GNN-based
methods focus on capturing structural information in graphs but rarely decompose semantic correlations, making
it difficult for them to capture potential content-based similarities between items or users. In comparison, our
method proposes to learn domain correlation from both semantic and structural perspectives, aiming to capture
comprehensive item characteristics and user preferences.

3 METHODOLOGY

This section first introduces our cross-domain recommendation method a clear description of the problem setting
and an overview of the procedure. Then we elaborate on the main components and principles of our method in
detail.

3.1 Overview and problem formulation

In this study, we use Dg and Dy to denote the source domain and the target domain, respectively. The user set

and item set in Dg are represented as Us = {ul Uy s uMS} and Is = {11 siys e IR respectively. The user set

and item set in D7 are represented as Ur = {ulT uZT . uLT} and It = {le izT, e iﬁr}, where Ur N Us # 0 and
It N Is = 0. Ms and Ng represent the number of items and users in Dg. My and Nt represent the number of users
and items in Dr. The goal of our research is to link domains by learning inter-domain correlations. For a user u,
we analyze his historical interactions I(u) = {i7,...,i5} in Ds to predict his preference for unobserved items in

Ir. In addition, we formally define KG as follows:

Definition 3.1 (Knowledge graph). Knowledge graph is a heterogeneous graph[10], where nodes represent
real-world entities (e.g. a book, author, publisher) and edges represent the relations. Given E as the entities set
and R as the relations set. Formally define the KG as Gxy = {(h,7,t) | h,t € E,r € R}, where the triple (h,7,)
represents an instance of “entity-relation-entity” in KG, such as “Harry Potter, author, J.K. Rowling”.
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The overall procedure of our method is shown in Fig. 2, with an emphasis on the Latent Factors part. The
KG-based Latent Factors learning consists of three components: 1). Semantic feature extraction model, which
extracts transferable semantic features based on domain adaptation technique. 2). Connectivity feature extraction,
which exploits the high-order structural relations of a cross-domain graph based on Graph Attention Network. 3).
The fusion strategy combines semantic information and structural information to complete item features. The
first function is implemented by DASFE and the next two functions are implemented by CD-KGAT. Finally, our
method predicts recommendations in the target domain based on the learned user and item features.
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Fig. 2. Overview of Knowledge-correlated Cross-domain Recommendation.

3.2 Domain adaptation-based semantic feature extraction model

Domain adaptation is able to learn a mapping in the presence of a shift between the training and test distributions.
Since cross-domain data usually have inconsistent distributions, we employ domain adaptation techniques for
unification to achieve effective knowledge transfer.

Definition 3.2 (Domain adaptation). Given X as the input feature space and Y as the set of labels. There are
two different distributions on X X Y, denoted as Ps for the source domain and Pr for the target domain. An
unsupervised domain adaptation training is based on the labeled source sample data Xs from Pg, and the unlabeled
target sample data Xt from PZ, where Pg.g represents the marginal distribution of Pr over X.

Ns NT
e (bt v o= )

i= i=1
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where x; € X represents the content description of item, and yis € Y represents the category label of the item
(e.g., “Action”, “Comedy”). Ns and Nt represent the amount of data in Xg and Xr. The goal of domain adaptation
is to make the distribution Ps and Py the same or very similar so that it is feasible to learn a classifier or predictor
applicable to the unlabeled target domain, which is not hindered by shifts between domains.

To fully explore the correlation of semantic knowledge between domains and avoid negative transfer, inspired
by the domain adaptation approach DANN[8], we propose the semantic feature extraction model DASFE for the
recommendation scenario. Specifically, following adversarial training-style convention, we use a paradigm of
encode-decode to map heterogeneous cross-domain knowledge into the same feature space. The framework of
DASFE is shown in Fig. 3, which includes three modules: feature extractor, label predictor, and domain classifier.
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Fig. 3. The framework of DASFE.

3.2.1 Feature extractor based on contextual representation learning. The feature extractor employs contextual
representation learning to extract semantic information from the content descriptions of items. Given an item v,
we obtain the item embedding from its content information through the word embedding technique Word2Vec[28],
as follows:

ern ={en€2...en} (2)
where n indicates the number of words in the content information, and e; € R¥ denotes the k-dimensional word
vector of the i-th word.

Text Convolutional Neural Network (Text-CNN)[20], as an automatic feature extractor, utilizes multi-layer
nonlinear transformations to extract features with strong knowledge representation ability. Therefore, we input
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the obtained item embedding into Text-CNN to further explore the semantic information. Specifically, the
convolution kernel w € R is applied to a text region to generate feature c;:

¢; = Relu (wTei;,-Jrh_l + b) (3)

where e;.;1 1 represents the text region containing h words. Relu(+) is a nonlinear activation function, and b € R
represents the bias term. Then we extend to all possible text regions in the content information to construct the
feature map:
¢ ={ciCit1s - Cnhr1} (4)
The next pooling operation performs downsampling to obtain important features of the original samples.
Assuming that ¢ kinds of feature maps cW @ o0 are generated through t convolution kernels, the item’s
semantic embedding is:

eSemantic — Dropout {P (c(l)) ,P (c(z)) Y (c(t))} (5)
where P(-) represents max-pooling. Dropout[12] regularizes the pooled vectors to avoid the overfitting.

3.2.2  Label predictor for multi-label classification with class imbalance. We perform in an encoding-decoding
paradigm to learn cross-domain item semantic features from KG. The feature extractor acts as an encoder to
generate embedding containing content semanticity; the label predictor acts as a decoder for restoring the original
information, which trains a classifier capable of predicting the category (i.e., genre, subject) of an item based on
the generated embedding.

Text data are commonly annotated with more than one label[35]. For example, the subjects of the movie
Toy Story include “Fantasy”, “Comedy”, and “Adventure”. Since KG is a large-scale knowledge base, the label
predictor needs to select a subset from the set with hundreds or thousands of labels when predicting relevant
categories of an item. Therefore, our label predictor faces the multi-label classification task. In addition, the set
of category labels usually has a long-tailed distribution, which means that popular labels appear much more
frequently than unpopular ones. For example, in a movie dataset, the number of “Action” items far exceeds that
of “Environmental-friendly” movies. If we directly feed class-imbalanced data into the model, the output will be
biased towards more popular labels resulting in poor training results.

We consider improving the model from the loss function for the multi-label classification with class imbalance
issues. Different from the previous work[23], our DASFE adopts Focal Loss (FL)[24] as the loss function of the
label predictor. FL specifically designs the weights based on the “hardness” of labeling the sample by the model,
aiming to balance the hard-to-labeling samples and easy-to-labeling samples. The definition of FL is:

Ly = a* (1 —Pf‘c)ylog (Pfc) (6)

where pf is the model’s estimated probability that the training sample i belongs to class k. The focusing parameter
y adjusts the rate at easy examples that are downweighted. a* balances the importance of different classes of
samples, and its value is between 0 and 1.

3.2.3 Feature alignment based on domain adversarial training. We employ domain adaptation to extract features
automatically while aligning the embeddings of semantically similar cross-domain items, aiming to correlate
heterogeneous knowledge across domains. Next, we describe the optimization objectives and training process of
DASEFE.

As shown in Fig. 3, DASFE consists of three modules: the feature extractor extracts item semantic features from
KG, denoted as G (x; 0 f); the label predictor performs multi-label classification on the semantic features extracted
by Gf and outputs the probability that an item contains the label y, denoted as G, (Gf (x) ;0y); the domain
classifier executes a binary classification task to distinguish the domains of samples, denoted as G4 (G (x) ; 04).

ACM Trans. Knowl. Discov. Data.
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In addition, to enable DASFE to learn semantic-level features with discriminativeness (for the main learning
task on the source domain) and domain-invariance (for the domain identification task), Gradient Reversal
Layer (GRL)[8] is set between G and Gy4. GRL reduces the domain sensitivity of the model during representation
learning in an adversarial training manner.

The label predictor G, ensures the learned semantic features have discriminativeness (i.e., accurately classify
items). Given a source domain sample j = (x},y;), the loss function of G, based on Eq. (6) is as follows:

L} (67,0,) =~ ¥ (1- Gy (Gr(x):8,) , )

(7)
-log Gy (Gf(x);0y) y

where LL (6f,0y) = Ly (Gy (Gr (xj:6¢) ;0y),y;), and the conditional probability of the item category label is
Gy (Gr(x);:0y) = Gy (Gr (x5 0r) ; 6)-

For the semantic features output by the feature extractor, the domain classifier G; constrains them to have
domain-invariance (i.e., cannot distinguish the domain of information), thus aligning the cross-domain feature
distribution. The loss function of Gy is as follows:

1
Ga (Gy (xi;0r) 5 6a)
+ (1 - dl) log

L(ii (Hf, Gd) =d,~ log

(®)

1
1—Ga (Gp (i3 0r) :6a)

where L; (Of, 9,1) =L4 (Ga (Gf (xi3 Of) ;Gd) ,di). d; represents the domain label of sample i. d; = 0 means sample
i belongs to the source domain, otherwise d; = 1.
DASFE jointly optimizes the label predictor loss L (6f, 6,) and the domain classifier loss Ly (05, 04):

N,

1

E (07, 0y 0a) =1 > L (05.0,)
S =1

( | N

N; + Nt ; La (gf’ Gd))

©)

where the domain adaptation parameter A is used to weigh the importance of the two modules in the objective
function. The saddle point is determined by:

éf, éy = argminE (Hf, 6y, éd) (10)
07,0,
éd = argmaxB (éf, éy, Gd) (11)
0a

GRL enables end-to-end training for DASFE that contains multiple modules. We formalize GRL as a “pseudo-
function” R, (x) with adaptation parameter A, where GRL performs identity transformation during the forward
propagation and automatically changes the gradient direction during backpropagation:

dR; _

Ry(x) = x, I -l (12)

ACM Trans. Knowl. Discov. Data.
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The stochastic gradient descent algorithm guides the parameter update of DASFE, as follows:

. o oL}, AaL;
feUr—H E— @
oL
0, — 0, — y—> (13)
y < Uy a0,
0 0 AaLé"
d < Uqg — [k %

where y is the learning rate.

In addition, we adopt the dynamic parameter A according to the iterative process[8], to enhance the model
adaptability and avoid the noise in the early stage of training. The learning process is summarized in Algorithm
14

Algorithm 1: Domain adaptation-based semantic feature extraction
Ns
i=1’

N-
DY)

Input: Source samples Xs = {(x7, %)}
Output: Model parameters 0, 8, 04
1 Initialize xis, 0y, 0a;
2 while stopping criterion is not met do
3 for each x; € Xg U X1 do
4 Initialize word embedding of x; using Word2Vec via Eq. (2);
5
6

Target samples X7 = {(x

e1n — Word2Vec(x;);

Construct semantic features e$¢mantic

i

in feature extractor Gy with 0r via Eq. (3) - (5) and the
Dropout operation;

7 # Analyze the categories of items in label predictor G;
8 Gy (Gr (x1) :0y) « sigm (fe (efmnt));
9 # Adapt domain regularizer in domain classifier G4;

10 Gy (Gf (x1) ;Qd) «— softmax (fcz (fcl (e?emamtiC ))) ;

11 end

12 Compute the total loss via Eq. (9) - (8);
13 Update Hf, 0y, 04 via Eq. (13);
14 end

15 return Gf, 04 04;

3.3 Cross-domain knowledge graph attention network

KG not only contains massive semantic information but also stores the data in a structured format. The previous
model DASFE focuses on learning semantic information. Next, we concentrate on explicit structural connectivity
across domains to take full advantage of the data available in KG.

We propose the Cross-Domain Knowledge Graph Attention Network (CD-KGAT), which aims to capture the
high-order connectivity in a knowledge-aware graph neural network. CD-KGAT jointly models the user-item
interactions and KG information, to understand user interests and item relations. In addition, we incorporate

“In the pseudo-code, fc(y) refers to the full connection layer. fc; and fc, are the same as above.
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semantic information in the representation learning of graph data, aiming to complete item profiles. As illustrated
in Fig. 4, CD-KGAT consists of four modules: cross-domain collaborative knowledge graph embedding layer,
attentive neighbor aggregation layer, feature fusion layer, and prediction layer.

Feature Fusion Layer

Attentive Neighbor Aggregation Layer

[ |
| . |
} e Target Item : | Target Item |
I ya Graph | | Embedding |
| ’/|—\ y Embedding | I — I
} /'/"D @/ I | [Combine] —— !
i / Ee“’ ) ! |::>I |
/
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Fig. 4. The framework of CD-KGAT.

3.3.1 Cross-domain collaborative knowledge graph. First, we build a unified graph, Cross-domain Collaborative
Knowledge Graph (CCKG), which is based on the idea of collaborative filtering with KG as auxiliary information.
CCKaG links users and items in different domains, aiming to break down the independence between user interac-
tions and enable the correlation of cross-domain knowledge. We define the user-item bipartite graph and CCKG
as follows.

Definition 3.3 (User-item bipartite graph). Given U and I as the user and item sets, respectively. Define the
user-item bipartite graph G,; = {(4, yui, i) | u € U, i € I}, where the triple (u, yy;, i) represents the interaction
between user u and item i. And y,; € {Interact}, where Interact = 1 indicates that user u has interacted with
(purchased, clicked, or watched, etc.) item i, otherwise Interact = 0.

Definition 3.4 (Cross-domain Collaborative Knowledge Graph). As shown in Fig. 5, the user-item bipartite
graph and KG form a unified CCKG: Based on Definition 3.1 and Definition 3.3, We formally define CCKG as
G = {(hrt) | h,t eE,r € R}, where E' = E U U,R" = R U {Interact}. The item nodes in G,; are aligned
(mapped) to the corresponding entity nodes in Gy, and these nodes act as bridge points connecting G,; with G,
to form G.

CCKG combines user behavior and external knowledge. If we only consider the user-item bipartite graph
containing collaborative information, for user u; in Fig. 5, it can only recommend the book The Snow Queen (il)

n o .g N o, . . . .
based on the path p; = u; — i5 — up — il. This approach requires a certain amount of overlapping users across

domains. In contrast, our proposed CCKG provides possibilities for discovering users’ multifaceted preferences.
For example, the long-distance path p = u, N i; 5 ny = izT indicates the scriptwriter 7.K. Rowling (e;) of the
movie i‘; that u; likes is also the author of the book izT , S0 u; may be more interested in this book. CCKG fully
explores high-order connectivity similar to the path p and links different domains while considering collaborative
information.

Knowledge Graph Embedding parameterizes entities and relations into low-dimensional dense vectors in
a specific space, while preserving the original structure of the graph[41]. We adopt TransR[25] to represent
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Fig. 5. An example of a cross-domain collaborative knowledge graph.

the structural information in CCKG. TransR is the embedding technique common in knowledge representation
learning, and its principle is based on the structure of KG triples. Given a triple (h,r,t) € G, TransR makes the
learned embedding consistent with ey, + e, ~ e;. The scoring function measures the reality of (h,r, t) as follows:

Score(h,r,t) = | Wyep, + e, — Wye||3 (14)

where W, is the matrix for mapping entities to the relation space of r.

We take embedding learning as a ranking task that compares the relative positions of samples. The positive
samples (h,r,t) € G represents the facts in KG; while the negative sample (h,r,t") ¢ G replaces the tail node
with a randomly selected entity ¢’. The loss function Lgg:

Lgg = Z —Ino (Score (h,r,t") — Score(h,r,t)) (15)
(hrt,t")

where o(-) is the sigmoid activation function.

3.3.2  Attentive neighbor aggregation layer. As shown in Fig. 4, we design the Attentive Neighbor Aggregation
Layer to capture the high-order connectivity across domains, which is motivated by the work[42]. The main
idea is to propagate information following the path in the graph and recursively aggregate the information from
multi-hop neighbors. However, for a central node, the number of its multi-hop neighbors increases sharply as the
order increases, and the information contributions of these neighbors vary with the correlation between nodes.
So we adopt attention mechanism to distinguish the importance of neighbor information and thus explore more
relevant information about the central node.

The Attentive Neighbor Aggregation strategy consists of three steps: information propagation, attention
calculation, and information aggregation. For a central node h, its first-order connected structure is defined as

Ny ={(h,r,t) | (hr t) € G}, and its embedding el(\?h) is calculated as follows:

ey, = Z a(hr,t)e; (16)

(h,r,t)eENy

where a(h,r,t) is the weight to control the information propagated from entity ¢ to entity h. We adopt the
attention mechanism to learn the weight a(h, r, t) as in Eq. (17). Note that the normalized a(h, r, t) is beneficial
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to find useful propagation information for each specific node.

o' (hr,t) = (Wre,)T tanh (Wyep + €,)
exp (a'(h,r, 1)) (17)

a(h,r,t) =
2 tyen, €xp (o (b1’ 1))

where tanh(-) is the activation function.
Next, neighbor information aggregation updates the embedding of the central node. Node h obtains the

embedding e}(ll) through first-order information:

e;ll) =f (e}(lo),el(\?h)) (18)

where f(-) is the aggregation function. We adopt the Bi-Interaction aggregation function[42] that considers
various interaction information between features to spread more information between similar entities, as follows:

f (en, en,) = LeakyReLU (W (e, +en,))

19
+ LeakyReLU (W; (e, @ en;,)) "

where LeakyReLU () is a nonlinear activation function. W; and W, are weight matrices, and © is the element-wise
product between matrices.

Repeating the above three steps several times, when the execution reaches the I-th time, e}(ll) denotes the
representation of the [-th-order information, as follows:

e = f (e el ) (20)

(0) 0]
b s s €

multi-order connectivity information asin Eq. (21).

Finally, all the obtained vectors {e > are concatenated to obtain the embedding ey, which contains

l
en=e, 1l lley’ (21)

We denote the embedding of the user node as e, and the item embedding containing structure-aware domain
knowledge as e? raphic

3.3.3  Feature fusion strategy. The previous two modules model cross-domain knowledge from the perspective
of structural connectivity. Further, we design the feature fusion layer to combine the semantic and structural
information, aiming to fully explore the cross-domain correlation and enhance the expressiveness of learned
representations. However, we acknowledge that the proposed method has a non-end-to-end limitation, as we can
only perform the fusion operation after the training of DAFSE is completed. As shown in Fig. 4, e/"“’ " denotes
an item feature generated by the attentive neighbor aggregation layer, which contains high-order connectivity
information; eisem“"t ic denotes an item feature generated by DASFE, which contains semantic information. We
design three feature fusion strategies with different ideas, denoted as FFL;,ir, FFLconcar, and FFLgq4.

semantic

® FFLyy;;: this strategy inputs the semantic feature e; into CD-KGAT for item vector initialization (i.e.,

e}(lo)), which will participate in the subsequent information propagation and aggregation.

® FFLconcaqr: this strategy concatenates eigmp hic and esemantic into a long vector, and then employs a fully

connected layer to transform the long vector to the specified dimension. It is worth noting that we use L2
regularization after concatenation, which aims to unify the magnitude of the combined vector for efficient
model learning.
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® FFLgq4: this strategy uses two fully connected layers to linearly transform e‘? raPhic and esemantic into the
same dimension. The two transformed features are then added after L2 normalization to obtain the final
item embedding.

We experimentally compare the three strategies, and the results are presented in Section 4.5.2.

3.3.4 Optimization. We denote the complete item features generated by the feature fusion layer as e;. Next,
CD-KGAT predicts u’s preference for item i by measuring the match between e, and e;:

J(ui)=e, *e (22)

In the sample dataset H, if the user u’s interactions contain item i, we denote (u, i) as a positive sample; by
randomly selecting j that is not in the interactions, we denote (u, j) as a negative sample. We define the loss
function Lcr based on Bayesian Personalization Ranking loss[30]:

Ler= ), —Ino(@(ui) - g j) (23)

(wij)eH

where o(-) is the sigmoid activation function. Lcr enables positive samples representing user preferences to
receive higher prediction scores than negative samples.
CD-KGAT performs overall optimization by jointly learning in correlating cross-domain information and
capturing collaborative information:
E(O) = Lc + Ler + A||©Il3 (24)

where Lk and Lcr are determined by Eq. (15) and Eq. (23), respectively; © is all parameters involved in CD-KGAT.
A is the regularization weight to avoid overfitting.

In summary, we combine the encoded high-order connectivity with the extracted semantic information to
realize our knowledge-correlated cross-domain recommendation method.

4 EXPERIMENTS
In this section, we conduct experiments to answer the following research questions:

RQ1 From the perspective of baseline comparison and internal mechanism, how does our method perform in
the cold start scenario?

RQ2 How effectual is domain adaptation on knowledge transfer?

RQ3 Does the consideration of loss functions address the class imbalance issue?

RQ4 How do different designed modules contribute to CD-KGAT performance?

RQ5 How does CD-KGAT perform with different feature fusion strategies?

4.1 Datasets

We conduct the following experiments on two datasets from Facebook and Amazon, respectively. The Facebook
dataset contains user interactions and item-related information on the platform and is provided by The Information
Retrieval Group® in the work[7]. The Amazon dataset® contains user ratings and product metadata (description,
category information, etc.), and we take ratings greater than 3 as positive interactions. DBpedia is a well-known
knowledge graph constructed based on Wikipedia, as an external knowledge base to provide auxiliary information.
For constructing the knowledge graph, we use the item metadata from DBpedia in our dataset, which is obtained
through syntactic matching and SPARQL query techniques. The title in the item description is used to retrieve
the KG entity ID from the DBpedia search API. To ensure the correctness of the retrieved information, we specify

Shttp://iriiuam.es/
Shttps://nijianmo.github.io/amazon/index.html
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Table 1. Statistics of the recommendation with KG datasets.

Avg. Overl CD-
Domain Items Users Interactions Categories . Ve Sparsity  Entities  Triples veriap .
items/cates users  connectivity
Facebook-Movie 5,383 57,008 1,495,145 2,203 6.81 99.51% 26,924 96,122 5187 19.21%
Facebook-Book 4,411 7,084 108,554 1,034 3.19 99.65% 16,130 38,376 e
Amazon-Movie 4,664 5,684 68,313 6,270 12.11 99.63% 56,862 176,281 3957 15.61%
Amazon-Book 5,886 3,257 684,878 8,921 3.45 96.43% 29,780 77,608 R

the item type (e.g., dbo:Book and dbo:Film ) to avoid the problem of similarly named items from different
domains, and then based on the item title to syntactic match with the label of its DBpedia entity. Since the data
of the knowledge graph is organized in triples (h, r,t) as shown in Definition 3.1, we use each linked entity as a
head entity h to get item metadata. It is worth noting that since our goal is item recommendation, we follow
the previous work [7] by specifying relation r as those relevant to relate the common preferences of different
users, such as genres and directors of movies, and more detailed information can be found in [7]. In addition,
we take a two-step filtering operation to ensure the quality of the datasets: 1). N-core filtering: filter out users
and items with less than N interactions to alleviate data sparsity[34]. We set N=10 for the Facebook dataset
and N=5 for the Amazon dataset; 2). Items-aligning: exclude items with no matched entities in DBpedia for
simplicity[17, 38, 39]. Table 1 shows the statistics of datasets, where “Avg. items/cates” denotes the average number
of categories contained in each item. We also make a quantitative analysis of the cross-domain connectivity in
the datasets, where “CD-connectivity” calculates the proportion of triples of common entities in the total triples.
The Amazon-KG dataset we have processed is available at GitHub® for further comparisons.

4.2  Experimental setup

4.2.1 Evaluation methodology. In the offline experiments, we simulate a user cold-start scenario in the target
domain based on the work[7], using a modified user-based five-fold cross-validation strategy with the following
main steps:

Step 1. The users in the target domain are divided into five equal-sized user groups. In each cross-validation phase,
four groups are training users, while the fifth group is the test users.

Step 2. For each test user u in the fifth group, we randomly select profileSize interactions (we set profileSize= 2)
and add them to the training set, with the remaining interactions as test data. Thus, user u becomes a new
user with very few interactions.

Step 3. Extend the training set with all data from the remaining four groups of users and all source domain data.

Finally, the training set contains three types of data: all data in the source domain, all data of the training users,
and profileSize data of the test users in the target domain. The test set contains only the remaining interaction
data of the test users.

Considering that a satisfactory recommendation can discover users’ potential preferences beyond their ex-
pressed interests, we evaluate the method’s performance in terms of both accuracy and diversity. For accuracy,
we adopt three widely-used evaluation metrics: Recall@K, Precision@K, and MRR@K. By default, we set K = 20.
Specifically, Precision is the mean probability that an item retrieved among top-K recommendations is relevant
to the user, and Recall is the mean probability that relevant items are successfully retrieved among top-K rec-
ommendations. MRR indicates the order in which the first item relevant to the user appears on average, and is

"Namespace for dbo, http://dbpedia.org/ontology.
8https://github.com/WangYuhan-0520/Amazon-KG-dataset
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calculated as follows:
U]

MRR = — Z ! (25)
i=1

m rank;

where rank; is the highest rank of relevant results of i-th user in the top-K recommendation list, and if the list
does not contain the relevant items then rank; — oco. For diversity, we use the metric BinomDiv[37], which
measures the diversity of items in the recommendation list based on the category information. BinomDiv is
defined as the product of two components:

BinomDiv(R) = Coverage(R) - NonRed(R) (26)

where R = {iy, i, ..., ix } denotes an output recommendation list, Coverage(R) measures the comprehensiveness
(coverage of the item categories) of R during predicting the user’s interests, and NonRed(R) denotes the non-
redundancy, which penalizes the score of R that over-represent a certain category. We average the scores of
the recommendation list for all test users as the final BinomDiv result. For the above four metrics (Recall@K,
Precision@K, MRR@K, and BinomDiv), higher values mean better recommendation performance. We report the
average results for the test set samples obtained through the five-fold cross-validation.

4.2.2 Methods in comparison and parameter setting. We compare the proposed method with the following
representative baselines in single-domain and cross-domain recommendation methods:

o Pop: Item popularity-based recommendation method, where popularity represents the number of interac-
tions. We randomly select N recommendations for a user among the top 100 popular target items.

o UserCF: User-based Collaborative Filtering method for single-domain recommendation. The user similarity
is calculated by Jaccard similarity.

o ItemCF: Item-based Collaborative Filtering method for single-domain recommendation. The item similarity
is calculated by Jaccard similarity.

e BPR[30]: Bayesian Personalized Ranking is a pairwise ranking method based on matrix factorization,
which optimizes based on the relative preferences of users.

o IMF[16]: Matrix factorization recommendation method for single-domain recommendation with implicit
(positive-only) feedback.

e DTCDR([49]: This work is the first to propose the dual-target CDR (methods that enable bidirectional
transfer across domains with a dual-learning mechanism), which designs an embedding-sharing strategy
integrating multiple sources of content information (e.g., reviews and tags).

e CoNet[13]: Collaborative Cross Networks is a cross-domain method that enables dual knowledge transfer
based on the designed cross-stitch networks.

o EMCDR[27]: EMCDR learns latent factors for each domain separately based on matrix factorization and
then uses a multilayer perceptron to bridge the cross-domain latent factors.

o CMF[33]: CMF jointly factorizes the rating matrices of two domains with the same users, assuming that all
domains have a shared global user embedding matrix.

o PTUPCDR[51]: A meta-network is learned by fed with shared user preferences in the source and target
domains to construct personalized bridge functions, aiming at personalized transfer of user preferences.

e CD-MFs[7]: Including three cross-domain recommendation methods based on matrix factorization model
with different regularization designs, namely SimMF, NieghborMF, and CentroidMF. They regularize
the model by computing the semantic similarity of cross-domain item metadata.

In addition, we also conduct experiments on UserCF, ItermCF, and IMF in the cross-domain scenario, and use
CD- as the prefix to denote the cross-domain versions of these methods, namely CD-UserCF, CD-ItermCF and
CD-IMF.
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Table 2. Overall Performance Comparison.

Facebook Movie—Book Amazon Book—Movie

Method Accuracy Diversity Accuracy Diversity

MRR  Recall Precision BinomDiv MRR Recall Precision BinomDiv
Pop 10.36% 5.00% 3.53% 4.98% 3.42% 1.91% 1.10% 3.77%
BPR 8.45% 2.93% 2.06% 4.36% 3.56% 2.13% 1.00% 3.63%
UserCF 13.82% 4.05% 2.87% 4.99% 597% 2.98% 1.54% 3.97%
ItemCF 12.93% 4.07% 2.77% 4.73% 5.26% 3.50% 1.46% 3.93%
IMF 14.36% 5.67% 3.86% 4.95% 5.40% 3.26% 1.61% 3.55%
CD-UserCF  17.65% 7.03% 4.97% 5.37% 6.61% 3.34% 1.72% 3.97%
CD-ItemCF  10.63% 6.23% 4.43% 6.43% 4.47% 3.25% 1.33% 3.84%
CD-IMF 17.80% 9.19% 6.40% 5.74% 6.43% 3.84% 1.92% 3.24%
DTCDR 8.77%  4.30% 3.10% 5.04% 4.88% 2.90% 1.54% 4.19%
CoNet 9.31% 3.42% 2.42% 4.70% 3.35% 1.95% 0.97% 3.72%
EMCDR 12.43% 4.02% 2.86% 5.05% 5.05% « 2.50% 1.23% 3.79%
CMF 14.40% 4.78% 3.36% 5.15% 6.59% 3.56% 1.62% 3.88%
PTUPCDR 1.69% 0.62% 0.44% 3.72% 0.68%  0.41% 0.19% 3.33%
SimMF 16.52% 9.13% 6.38% 5.85% 6.70% 3.78% 1.83% 3.53%
NeighborMF 17.74% 9.17% 6.41% 5.84% 6.63%  3.76% 1.82% 3.54%
CentroidMF 16.26% 9.01% 6.31% 5.74% 6.70% 3.77% 1.82% 3.52%
CD-KGAT 29.21% 8.83% 6.34% 6.84% 6.89% 3.28% 1.46% 4.20%

The parameter settings of our method are as follows. For the parameters of DASFE, the dimension of Word2Vec
embedding is 100, and the three convolution kernels of Text-CNN are 256 in number and 2, 3, and 4 in size. We
set y = 2, a = 0.25 in the loss function (Eq. (6)), due to the best performance in the experiments of the original
paper[24]. We use stochastic gradient descent optimization to train DASFE. For the parameters of CD-KGAT,
the information propagation layer depth is searched in {1, 2, 3,4} (see Section 4.6 for detailed analysis), and the
dimensions of each layer are 64, 32 and 16, respectively. We use the best-performing FFL,44 as the feature fusion
strategy (see Section 4.5.2 for experimental comparison) and adopt the Adam optimization to train CD-KGAT. For
the comparison fairness of all methods above, we restrict the maximum training epoch to 300, the batch size to 256,
the embedding size to 64, the dropout ratio to 0.1, the regularization weight s searched in {10’5, 1074, 1073, 10’2},
and the learning rate is tuned in {0.01, 0.001, 0.0005, 0.0001}. The remaining parameters of baselines are fine-tuned
based on the optimal values in the original paper.

4.3 Overall Performance and Case study (RQ1)

We evaluate the performance of our proposed model in terms of accuracy and diversity, and then intuitively
analyze the mechanism of the method through a case study.

4.3.1 Overall comparison. Table 2 shows the comparison results in terms of accuracy and diversity. We have the
key observations as follows.

For our proposed CD-KGAT. It shows promising performance in both accuracy and diversity metrics. In the MRR
results. CD-KGAT has the best performance, outperforming the single-domain methods by 14.85~20.76% and the
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cross-domain methods by 11.41~27.52% on the Facebook dataset, and outperforming the single-domain methods
by 0.92~3.47% and the cross-domain methods by 0.19~6.21% on the Amazon dataset. In the results of Recall and
Precision, CD-KGAT outperforms most recommendation methods and can achieve comparable results to the
best-performing ones. For the diversity metric BinomDiv, CD-KGAT improves by 0.41~3.12% compared with other
recommendation methods on the Facebook dataset and is 0.01~0.96% on the Amazon dataset. Overall, these results
show that, even in cold-start scenarios, our proposed method is capable of exploring not only the expressed but
also the diverse potential ones for user interest. This confirms the effectiveness of our method in correlating
cross-domain knowledge: it utilizes the cross-domain transferable semantic features extracted by DASFE, which
ensures the recommendation accuracy; at the same time, it uses the graph information propagation in CCKG
to obtain high-order connectivity across domains to encode users’ multifaceted preferences, thus showing the
advantages in diversity.

Cross-domain methods vs. single-domain methods. For the single-domain methods, Pop and BPR both perform
poorly due to the fact that the former only provides non-personalized recommendations, while the latter struggles
in coping with the cold-start. It is worth noting that the cross-domain version of UserCF shows improvements
in both accuracy and diversity. However, ItemCF and IMF do not always improve after incorporating cross-
domain information, and the reason may be that CD-ItemCF and CD-IMF fail to balance different domain
information, making the auxiliary data become noise that weakens performance. It suggests that CDRS should
focus on the efficient transfer and utilization of multi-source data. For methods that are inherently cross-domain
recommendations, we can see that most have significantly better diversity than the single-domain methods.
Among them, the accuracy performance of the dual-target methods DTCDR and CoNet is unsatisfactory, which
may be attributed to their requirement for common users to have an equal amount of behaviors across domains,
thus hardly handling the gap between sparse and dense data. The matrix factorization-based methods EMCDR and
CMF focus more on the overlapping information between domains and achieve relatively better results. PTUPCDR
achieves the worst performance, although the method expects to learn personalized preference transfer for users,
it requires a training set of shared users with enough interactions in both domains to train the parameters of the
meta-network, leading to the method’s difficulty in cold-start scenarios. In contrast, the three methods of CD-MFs
have competitive performance, which is attributed to the successful utilization of semantic information. However,
their diversity is lower than our CD-KGAT due to the lack of consideration of the structural information.

Together these results provide important insights into the capabilities of CDRS. With the prerequisite of effective
knowledge transfer, cross-domain methods increase the available data in the target domain, thereby alleviating the
problem of cold-start and data sparsity. Moreover, since the single-domain methods may be vulnerable to similar
and redundant item types, introducing varied data from other domains enhances the diversity of recommendation
results. In summary, our experiments verify the superiority of cross-domain recommendation methods.

4.3.2 Case study. We present a case study to discuss our method in detail. We first randomly sample a user
100030 from the Facebook dataset and scrutinize his historical interactions (i.e., the data in the training set) as
shown in Table 3, and the Top-10 recommendations provided by CD-KGAT as shown in Table 4.

Table 3 provides that the user is interested in genres such as “Fantasy”, “Adventure”, and “Children”, and
also occasionally watch “Science” movies. Table 4 shows that CD-KGAT captures the user’s primary interests,
providing him with Twilight, City of Ashes, and Chosen in the “Fantasy” category, and The Hunger Games and
The Alchemist in the “Adventure” category. A notable observation is that one of the user’s interests, the genre
keyword “Children”, CD-KGAT recommends the target domain item Speak, whose genre keyword is “Young
adult”. This shows that CD-KGAT is able to align cross-domain features by analyzing the content information of
items from a semantic perspective. Meanwhile, CD-KGAT also provides “Science” items Pretties and Uglies for
users’ secondary interests. Therefore, it verifies the accuracy of the method in learning user’s domain-specific
preferences.
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Table 3. u190030’s history interactions.

Table 4. Recommendations for u1(g030.

19

Item Name Genre Item Name Genre
Movie Percy Jackson and Fantasy | Adventure Book - Twilight Fantasy [Speculative
; ) ) [Horror[Romance
The Lightning Thief Book The Hunger Games Adventure | Science fiction |
Book  Inkheart Fantasy |Speculative Dystopian|Post-apocalyptic
| Children Book  City of Ashes Fantasy | Young adult
. . Book To Kill a Mockingbird Racism|Ethnicit:
Movie Shrek Children | Adventure ©0 ORI @ Mockingotr a,mr.n‘ ety
|Discrimination
|Action Book  Warriors Science fiction | Fantasy
Movie The Final Destination ~ Horror|Paranormal Book Chosen (A House of ~ Fantasy [Horror
Movie Iron Man Science |Action|War Night novel) |Speculative
Movie Bride Wars Romance| Comedy Book  Pretties Science fiction [Dystopian
. . . Yo dult
Movie The Karate Kid Education|Drama | Young adu
Book Speak Young adult |Crime
|[Romance . . . .
) Book Uglies Science fiction |Dystopian
Book A Series of Unfortunate  Children | Comedy |Speculative
Events Book The Alchemist Adventure | Fantasy
Movie Law Abiding Citizen Crime|Thriller

Another notable observation is that the recommendation list also includes items that differ from the genres of
the user’s historical preference, such as the book To Kill a Mockingbird. This result may be explained by the fact that
this book contains content plots about “Law” and “Judge”, while Law Abiding Citizen in the historical interactions
starts the storyline based on “Judicial procedure” related content. So there is a potential correlation between the
two items. Since CD-KGAT captures high-order relations across domains from the connectivity perspective, it
makes multi-category items of users’ interests more reachable, thus enhancing diversity performance.

Without loss of generality, we randomly select another user u;49032. Same as above, we check his history and
recommendations provided by CD-KGAT as shown in Table 5 and 6, respectively. We can see that CD-KGAT
also captures the user’s primary interests, such as “Comedy”, “Science” and “Fantasy”. However, there are also
some items in the recommendation list that are untraceable as they contain genres that are beyond intuition. We
analyze this probably because the movie domain has some domain-specific information, as the red boxed ones
in the table: “Computer-animated”, “Film soundtracks” and “Musicals”. Similarly, the book domain has specific
information like the description of writing techniques “Narrative”. We recognize that CD-KGAT focuses on
capturing cross-domain consistency without considering single-domain peculiarities, resulting in domain-specific
features also involved in the learning process of content semanticity and structural connectivity, which becomes
noise for training the model to a certain extent. In future work, we will discriminatively model the domain-shared
and domain-specific information (using techniques such as disentanglement) to improve transfer learning across
domains.

4.4  Model Analysis of DASFE

Next, we evaluate the ability of DASFE in knowledge transfer and the effectiveness of model design through
qualitative and quantitative experiments.

4.4.1  Effect on knowledge transfer (RQ2). A good representation for cross-domain transfer is domain-invariant,
which means that the algorithm cannot learn to identify its domain of origin[2, 3]. We adopt t-SNE[36] to visualize
the distribution of the extracted semantic features from different domains on the Facebook dataset, aiming to

ACM Trans. Knowl. Discov. Data.



20 + Yuhan Wang, Qing Xie, Mengzi Tang, Lin Li, Jingling Yuan, and Yongjian Liu
Table 5. uj00048’s history interactions. Table 6. Recommendations for u10004s.
Item Name Genre Item Name Genre

Novie  Finding Nemo Computeramimated|Chlden — Thepchhikr’s uide[Comeay speciatie
| Film soundtracks |Adventure to the Galaxy | Science fiction

Movie The Stepford Wives Comedy | Science |Technology Book A Series of Unfortunate Gomeay]Children

Movie Office Space Comedy | Film soundtracks Events

Movie Miss Congeniality Comedy | Film soundtracks Book Brave New World | SSClenCletﬁctlon [Dystopian

. ’ - - peculative

Movie - The Prestige Science [Thriller|Revenge Book Wuthering Heights Fantasy |Victorian|Speculative

Movie What Women Want Fantasy [Romance |Advertising . . .

Movie  The Ph he O R D Book  Watership Down Fantasy |Children|Speculative

ov%e ¢ Phantom of the Opera mjnance\ usicals | ra.lma Book  Memoirs of a Geisha Historical|Sexuality

Movie Happy Feet Childr en| Book Jane Eyre Victorian|Gothic|Orphans
[Environmental Book The Count of Monte Cristo Maritime|Adventure/Revenge

Movie Avatar Science |Technology Book  The Shack Christian

Book I Capture the Castle Comedy [Romance Book  Paradise Lost Christian|

Book  The Historian Historical[Horror Book  Twilight Fantasy [Speculative
|Speculative|Gothic \H({rror\Romance

Movie  Sleepy Hollow Horror|Crime|Ghost Book  Walk Two Moons Chils

Movie The Princess Bride Fantasy |Adventure| Comedy :

evaluate the effect of our method on semantic knowledge transfer. The proposed DASFE uses domain adaptation
to align item features in a unified feature space. For comparison, we set another model named Source-Only,
which uses only source domain data for training. In addition, perplexity is a hyperparameter of t-SNE and is
considered as a smooth measure of the number of effective neighbors[36]. We investigate the visualization of
perplexity at different values®. As shown in Fig. 6, we color-code samples by domains, where the blue circles
indicate the source domain and the red triangles correspond to the target domain. It can be seen that the features
learned by Source-Only are scattered and disordered, with no obvious manifold distribution, and the features of
the two domains hardly overlap. The result can be explained by the heterogeneity in the content information
of different domains, leading to differences in extracted features. In contrast, the features of the two domains
extracted by our DASFE have a high degree of overlap and exhibit similar manifold distributions even under
different perplexities. Since the domain adaptation effect largely represents the classification accuracy of the
model for the target domain[8], this effect is strongly related to the feature overlap in visualization. Therefore,
the experiments demonstrate that Source-Only is not suitable for the knowledge transfer task, while DASFE can
utilize domain adaptation to obtain domain-invariant semantic features, which is beneficial for cross-domain
knowledge correlation.

In addition, the extracted semantic features should be discriminative, which implies the ability to perform the
classification task at the semantic level. We select several representative items in the target and source domains
and visualize their extracted features using t-SNE, as shown in Fig. 7. It can be seen that the book Harry Potter is
the closest to the movie Harry Potter, which is consistent with their content facts. Secondly, the distance between
the movie Toy Story and the book The Little Prince is closer than other items, which is consistent with the fact
that they both belong to the genres of “Children” and “Fantasy”. While the movie The Avengers is far from the
other items, probably because it belongs to the distinctive genres of “Science fiction” and “Adventure”.

Further, we perform quantitative analysis by calculating the cosine similarity between the extracted item
features, as shown in Table 7, where (M) in the name suffix means movie and (B) means book. As can be seen in
Table 7, whether in the same domain or different domains, DASFE can learn closer feature representations for

9The learning rate of t-SNE is fixed to 10, and we use the default settings provided by Scikit-learn for the other parameters.
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Fig. 6. The effect of adaptation shown by t-SNE visualizations of source and target domains with different perplexities. The
images in the first row are the results of Source-Only model and the second row is the results.of DASFE model. The blue
circles indicate the source domain samples and the red triangles correspond to the target domain samples.

Toy Story(Movie)

The Little Prince(Book) z
) ¢

Harry Potter(Movie)

Harry Potter(Book)

The Avengers(Movie)
*

X

Fig. 7. A case study on t-SNE visualization of item semantic features.

items with semantically similar content information, which is also consistent with the results of the previous
visual analysis. Therefore, it verifies that our model can effectively extract the content semanticity of items, and
the learned features are discriminative, which helps fully mine the relationships between cross-domain items.

4.4.2

Improved design for class imbalance (RQ3). Since our method utilizes the category attributes of items as

training labels in semantic feature extraction, we conduct statistics on the distribution of the labels. Table 8 shows
the distribution of some category labels on the Facebook dataset. We can see that the occurrence frequency of
labels varies greatly, for example, the ratio of “Comedy” to “Toys” in the movie domain even reaches 108.5:1. So it
is necessary to handle the class imbalance to ensure effective learning.
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Table 7. Cosine similarity matrix of the item features.

HarryPotter(B) HarryPotter(M) TheLittlePrince(B) ToyStory(M) TheAvengers(M)

HarryPotter(B) 1.0000 - - - -
HarryPotter(M) 0.8508 1.0000 - - -
TheLittlePrince(B) 0.5864 0.5699 1.0000 - -
ToyStory(M) 0.3614 0.4037 0.5553 1.0000 -
TheAvengers(M) 0.3611 0.3929 0.1485 0.1722 1.0000

Table 8. Distribution of partial categories within the Facebook-movie and Facebook-book domains.

Movie Category Comedy  Romance Crime  Children --- War Toys
Samples Num. 1302 556 457 269 .. 96 12

Book Category Speculative  Science  Political Business <---~ Psychology Animals
Samples Num. 991 213 129 66 e 34 7

Table 9. Comparison of DASFE using different loss functions.

Recall Precision F2

DASFE-FL 76.64% - 98.97%  80.26%
DASFE-BCE 17.68% 74.86% 20.87%

We deal with the class imbalance issue from the point of loss function optimization: for the label predictor of
DASFE, we employ Focal Loss (FL)[24] as the loss function of the output layer (Eq. (6)), denoted as DASFE-FL. We
replace the loss function with the common Binary Cross Entropy loss (BCE) in the comparison model and denote
it as DASFE-BCE. We use three metrics: Precision, Recall, and F-Score, to evaluate the classification performance
of the label predictor. F-Score is a tradeoff of Recall and Precision as follows:

_ (#*+1.0) - Precision - Recall
h= p? - ( Precision + Recall )

where § = Recall/Precision is used to adjust the relative weights of the two metrics. Since the goal of DASFE is
to predictall category labels contained in an item, Recall plays a more critical role in the evaluation. Therefore,
we use f§ = 2 and denote this metric as F2.

Table 9 shows the evaluation results of the two models on the test set after training reaches convergence. We
can see that DASFE-BCE achieves extremely unsatisfactory results, while DASFE-FL significantly outperforms
it in all three metrics. We investigate the model training process in detail to further analyze the impact of
class imbalance. Fig. 8 shows the training results obtained after 200 epochs. From Fig. 8(a) and 8(b), we can see
that although DASFE-BCE can achieve a relatively high Precision, its Recall is consistently at a low value. The
reason for this is that in the scenario of class imbalance, BCE biases the label predictor towards popular labels
while ignoring other less frequent labels. However, this bias is not suitable for the optimization goal of DASFE,
which leads to the failure of inductive learning on samples. In contrast, DASFE-FL improves performance with
increasing training times. It shows that under the guidance of FL, DASFE is able to learn the semantic features by
continuously fitting the samples, thus realizing stable progress in the classification task. Fig. 8(c) also shows that

(0 < B < +00) (27)
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DASFE-FL is superior to DASFE-BCE significantly in the comprehensive metric F2. Therefore, this comparative
experiment verifies the effectiveness of our improved design for class imbalance.

90% * %
80% 80%

70% 70% 0%
60% 60% 0%
50% 50% 50%
0% 40% 0%
30% 30% o

20% 20% 20%
10% e 10% 10%
0%

0 20 40 60 8 100 120 140 160 180 200

Precision

0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200

Epoch -e-Focal Loss —+BCE Loss Epoch —oFocal Loss -«BCE Loss Epoch

-e-Focal Loss —+BCE Loss

(a) Recall (b) Precision (c) F2

Fig. 8. Analysis of the training process of DASFE using different loss functions.

4.5 Model Analysis of CD-KGAT
We perform ablation and contrast experiments on the model to gain deep insight into the design of CD-KGAT.

4.5.1 Ablation study (RQ4). We conduct an ablation study to evaluate the impact of knowledge graph embedding,
attention mechanism, and semantic feature fusion. For CD-KGAT, we disable the fusion of semantic features in
the representation learning of CD-KGAT (see Section 3.3.3), denoted as “w/o Semantic”; we disable the adaptation
of cross-domain item features in semantic knowledge extraction (see Section 4.4.1), denoted as “w/o DA”; we
disable the knowledge graph embedding module (Eq. (15)), denoted as “w/o KGE”; we disable the attention
mechanism (Eq. (17)), denoted as “w/o Attentive”. The experimental results are shown in Fig. 9 and 10.

35% 8.0%
6.83% 6.89%
29.21% 7.0% 9,
30% 6.06% 1 6.28%
5% 6.0% 5.51%
2095%  21.10% "
20% 18.83%  19:51% 0%
4.0%
15%
3.0%
10% 2.0%
5% ! 1.0%
0% 0.0%
MRR MRR
w/o Semantic w/oDA mw/oKGE mw/oAttentive mCD-KGAT w/o Semantic w/o DA w/oKGE ™ w/o Attentive ™ CD-KGAT
Fig. 9. Ablation results on Facebook dataset. Fig. 10. Ablation results on Amazon dataset.

From the results, we find that the removal of four modules degrades the performance. On the Facebook dataset,
removing the attention mechanism degrades the performance by 8.11%, which indicates that not differentiating
the contribution of neighbor information may create noise to affect feature learning. Removing the knowledge
embedding module leads to an 8.26% reduction in MRR, which demonstrates its importance for predicting user
preferences in digging for cross-domain connectivity. Compared with the previous two modules, it can be seen
that semantic feature fusion has a more significant impact on accuracy with 10.38%. The performance of “w/o
DA is also unsatisfactory due to the lack of cross-domain semantic alignment, which confirms that transferable
semantic information across domains helps to build complete item profiles and enhances representation learning.
On the Amazon dataset, the ablation of the four modules shows a similar trend. Therefore, this experiment
verifies the effectiveness of our model design.
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4.5.2  Comparison of feature fusion strategies (RQ5). In order to make full use of the KG information, we design
three feature fusion strategies, namely FFL;pi;, FFLconcar, and FFL,44. We compare the performance of CD-KGAT
with different strategies as shown in Fig. 11 and 12. What stands out is that FFL,44 is significantly improved
compared to FFLjyi; by 10.02% and FFLoncqr by 10.47% on the Facebook dataset, and 2.96% and 0.60% on the
Amazon dataset. It shows that FFL,44 can combine the advantages of semantic and structural information more
appropriately. Then we experiment on FFL,y,; without L2 normalization, denoting it as FFL,zq w/0 reg. We can
see that not using normalization weakens the performance. The reason may be that the magnitudes differ between
different types of features, directly adding them may lead to distortion of useful features. This experiment verifies
that our method fits user-item interactions well, thus accurately discovering user preferences.

35% 8%
29.21% 6.89%

30% 27.38% 7% 6.29%

25% 6% 5.56%

20% 19.19%  18.74% 5% o

N 3.93% -

4%

15%
* ' P

10% [
2%

5% 1%

0% 0%

MRR MRR
FFLinie ™ FFLconcae ™ FFLgga ™ FFlaaa w/o reg FFLinie ™ FFlconcae ™ FFLaga " FFlaaa w/o reg

Fig. 11. Comparison of fusion strategies on Facebook dataset. Fig. 12. Comparison of fusion strategies on Amazon dataset.

4.5.3 Comparison on KG properties. Since our proposed CD-KGAT is KG-dependent, we reprocess the KG data
of the Facebook dataset from the properties of sparsity and reliability to gain insight into the usefulness of KG
for the proposed method. First, we randomly remove triples with a percentage of 40% for the original KG Gy,
denoted as “sparse-KG”. Second, we generate the fake KG by reconstructing the triples in Gy,. Specifically, we
generate a fake triple by randomly replacing the tail entity with the original triples: (h,r,t") = fake((h,r,t)),
where t’ # t. We perform a one-to-one fake operation on all triples in Gy, to generate “fakeKG” with the same
density; then we randomly remove triples with a proportion of 40% for “fakeKG”, denoted as “sparse-fakeKG”;
further, we perform random connection between nodes to enrich the triples with a proportion of 40% for “fakeKG”,
denoted as “dense-fakeKG”. The information statistics of the above KG variants are shown in Table 10!, where
we utilize two density metrics for KG information proposed by Jay Pujara et al.[29], defined as the average triples
per relation (relational density, RD) and the average triples per entity (entity density, ED):
Il 2|7

RD=-— ED=
IR 1]

(28)
where ||T|| is the number of all triples in KG.

We conduct experiments on the proposed CD-KGAT utilizing variants of KG as shown in Fig. 13. In terms of KG
sparsity, we can see that the effect of CD-KGAT on “sparse-KG” decreases compared to the original “KG”, which
is attributed to the fact that the removal of information makes “sparse-KG” less helpful for structural connectivity
of the method across domains. In terms of KG reliability, “sparse-KG” still outperforms all three fakeKGs. It is
interesting to note that MRR decreases as the density of fakeKG increases, implying that the reliability of KG is
proportional to the model performance. The reason may be that the false connections in the graph increase the
noise data, which makes CD-KGAT merge useless information during neighbor aggregation. More dense fakeKG

10Here we merge the original KG triples from the two domains for density calculations, noting that the “Triples” statistic is not exactly equal
to the summation of the value in the “Triples” column of Table 1 due to the overlap of the triples from the two domains.
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results in more noise, thus “dense-fakeKG” generates the weakest effect. In addition, since CD-KGAT has certain
guarantees from the perspective of content semanticity!!, it still outperforms other baselines even on fakeKGs,
which confirms the advantage of learning from our dual perspectives in robustness.

Table 10. Statistics of KG variants. 0% Sroe  2921%
26.03% 26:73%

25% 23.63%

N
S
xR

KG variants Triples RD  ED

dense-fakeKG 176,899 5,706 9 1ox

fakeKG 126,357 4,076 6 " N
sparse-fakeKG 75,815 2,446 4 -

sparse-KG 75,815 2,446 4 donsefakoka midkoks mspmmotaters Wharsera I
KG 126,357 4,076 6

Fig. 13. Comparison on KG properties.

4.6 Parameter sensitivity

CD-KGAT uses the information propagation mechanism to capture high-order neighbor information. We vary [
in Eq. (20) - (21) while keeping other parameters fixed, to further analyze the effect of propagation depth on the
cross-domain recommendation. The experimental results with different propagation layers are shown in Fig. 14.
The left side of the figure shows the convolution kernel size settings for different layers. We set the reduced size to
avoid possible noise impacts of high-order distant nodes[48]. It is apparent from this figure that the performance
improves with the propagation depth and reaches an optimum at / = 3, while the performance degrades when
I = 4. We have the following understanding: CD-KGAT can accurately model high-order relationships across
domains, and the information propagation mechanism can improve the model performance. However, possible
noise in over-high-order information may affect the representation learning.

5 CONCLUSION AND FUTURE WORK

In this paper, we innovatively propose a knowledge-correlated cross-domain recommendation method, which uses
KG as common knowledge to link different domains, and explores the contribution of KG from dual perspectives
of content semanticity and structural connectivity. We first mine cross-domain transferable semantic information
based on domain adaptation, then capture cross-domain high-order structural information based on the graph
neural network. In particular, we design the feature fusion strategy to combine the two types of information,
thereby enhancing the representation learning ability of the model. We conduct experiments under the cold-start
scenario and use a series of qualitative and quantitative analyses to verify the rationality and effectiveness of the
method. The results demonstrate that our method has the advantages of accuracy and diversity in preference
prediction.

This research focuses on the analysis of the relationship between cross-domain knowledge and user preferences,
thus enriching the theory of cross-domain recommendation research and providing implications for coping with
the cold-start problem in reality. Furthermore, our method can extend in future contributions by exploring more
application scenarios (e.g., the dual-target CDR). And we will consider more available information such as user
reviews, social relations, and user-related information.

1We have not made changes to the semantic module DASFE, even though the semantic information of KG is used in this paper. The reason is
that common recommendation datasets contain item-related attributes that can also provide semanticity.
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Fig. 14. Effect of information propagation depth.
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